
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP014618
TITLE: Proportional Frequency Designs

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the Eighth Conference on the Design of
Experiments in Army Research Development and Testing

To order the complete compilation report, use: ADA419759

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

-he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP014598 thru ADP014630

UNCLASSIFIED



PROPORTIONAL FREQUENCY DESIGNS

Sidney Addelman
Research Triangle Institute

CONDITION OF EQUAL FREQUENCIES • In 1945 Finney [5] intro-
duced the procedure, known as fractional replication, which permitted the
uncorrelated estimation of some of the effects and interactions when only
a fraction of the full factorial arrangement was used. The standard method
of constructing fractional replicate plans is to first choose an identity re-
lationship and then deduce from this relationship the appropriate treat-
ment combinations. By utilizing the assumption that the higher order inter-
action effects are negligible this standard procedure permits the esti-
mation of the remaining effects. For the symmetrical factorial structure
(all factors having the same number of levels) the standard procedure yields
uncorrelated estimates due to the condition of equal frequencies of the
factor levels. If the treatment combinations of the 25 factorial plan were
inspected one would find that

(1) Each level of every factor occurs exactly eight times with every
level of any other factor.

(2) Each combination of levels of any factor occurs exactly four times
withevery combination of levels of each pair of factors.

(3) Each combination of levels of any pair of factors occurs exactly
two times with every combination of levels of any other pair of factors.

(4) Each level of any factor occurs exactly two times with every com-
bination of levels of any three factors.

(5) Each level of any factor occurs exactly once with each combin-
ation of levels of any four factors.

(6) Each combination of levels of any pair of factors occurs exactly
once with every combination of levels of any three factors.

Because the condition of equal frequencies is satisfied for all six
of the above cases uncorrelated estimates of all effects can be obtained.

Now consider a 1/4 replicate of the 25 factorial structure defined by
the identity relationship

I = ADE = BCD =ABCE
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and consisting of the following treatment combinations:

A B C D E

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 0
1 0 0 0 1
1 0 1 1 0

1 0 1 0
1 1 0 1

One can verify that in this plan each level of any factor occurs
exactly twice with every level of any other factor, and hence uncorrelated
estimates of all main effects are obtainable, if all interactions are negli-
gible. It can also be verified that each level of a factor does not occur
the same number of times with every combination of levels of those pairs
of factors with which it is aliased. Hence not all main effect estimates are
uncorrelated with two-factor interaction estimates.

When one wishes to construct fractional replicate plans for symmetri-
cal factorial arrangements one need only satisfy the appropriate equal
frequency conditions to obtain uncorrelated estimates of the effects.
However, in the construction of fractional replicate plans for asymmetri-
cal factorial arrangements (all factors not having the same number of
levels) the condition of equal frequencies requires more treatment com-
binations than are necessary to yield uncorrelated estimates.

CONDITION OF PROPORTIONAL FREQUENCIES. Although the
equal frequency condition is sufficient to guarantee orthogonality of fac-
tors it is not a necessary condition. It was proved by Addelman and
Kempthorne [U1 that a necessary and sufficient condition that the main
effect estima es of two factors be uncorrelated is that the levels of one
factor occur with each of the levels of the other factor with proportional
frequencies. Consider two factors, A and B, occurring at r and s
levels respectively. Let

N = number of treatment combinations in the plan

n. = number of times the i level of factor A occurs1°1
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n. = number of times the j level of factor B occurs

n. = number of treatment combinations in which the i level
1 of factor A occurs with the j level of factor B.

The above necessary and sufficient condition for orthogonality can be dis-
played mathematically as

(1) nij = ni. n.I/N

The condition of proportional frequencies can be generalized so that
plans may be constructed with permit uncorrelated estimates of two-
factor interactions as well as main effects. Consider three factors A,
B and C. In order that the interaction AB can be uncorrelated with C,
each combination of the levels of A and B must occur with the levels of
C with proportional frequencies, that is

(2) nik =n n. /Nijk k

Since it is desirable that A be uncorrelated with B

(3) n.. = n. n. /N

and hence

(4) n = n. n. n /N1"" .J. * k

This condition which assures that AB is uncorrelated with C also im-
plies that AC is uncorrelated with B, BC uncorrelated with A, and hence
AB, AC and BC are pairwise uncorrelated. If a plan contains four or
more factors condition (4) must be replaced by

(5) nijkm = n. n n n n/N 3

which is the necessary and suffficient condition that a plan permit un-
correlated estimation of~all main effects and two-factor interaction effects.

0
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COLLAPSING OF LEVELS. A factor at s1 levels may be.collapsed

to a factor at s2 < sI levels by making a many-one correspondence of theS~m
set of allevels to the set of s2 levels. If sI = s then the sI levels can

be collapsed to (sl I)/(s 2 -1) factors each having s2 levels. Some illus-

trations of typical correspondence schemes are presented below.

Three -level Two -level

factor factor

0 > 0

Z >0

Four-level Three-level Two-level
.factor facto r factor s

0 > 0 > 000
1> 1 > 011
2 , > 2 > 101
3 > 1 > .110

Five-level Four-level Three-level Two-level
factor factor factor factor

0 > 0 >0 >0
1 > 1 >1 >1
2 > 2 >2 -> 1
3 > 3 >2 >1
4 .> 0 >0 ... >0

2 2An orthogonal main-effect plan for the 2 x 3 experiment which per-
mits uncorrelated estimates of all main effects with only nine treatment com-
binations is now constructed to illustrate the technique of collapsing levels.
First construct an orthogonal main-effect plan for four factors, each having
three levels with nine treatment combinations, namely

0
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0 .0 0 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
2 0 2 2
2 1 0 1
S2 2 1 0

If each of the first two factors are collapsed totwo-level factors,
the resulting treatment combinations constitute an orthogonal main-
effect plan for the 22 x 32 experiment and are displayed below.

o 0 0 0
0 1 1 2
0 0 2 1
1 0 1
1 1 2 0

1 0 0 2
0 0 2 2
O 1 0 1
0 0 1, 0

The smallest plan which yields uncorrelated estimates of the main
2 2

effects of the 2 x 3 experiment and which also satisfies the equal fre-
quency condition would require 36 treatment combinations.

It should be mentioned that the proportional frequency condition will
be satisfied no matter what -type of correspondence scheme is used to
perform the collapsing procedure. However, the efficiency of the esti-
mates depends upon the particular correspondence scheme chosen.

If the (s- 1) degrees of freedom for each of the t. factors at s.
levels.are represented by (si - 1) orthogonal contrasts among the s.

1 1

levels, the estimates obtained by these contrasts will be uncorrelated
with the estimates obtained with the contrasts for any other factor, be-
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cause the correspondence scheme automatically guarantees proportional
frequencies of the levels of each factor.

REPLACING FACTORS . The collapsing procedure given above can
be reversed so that a factor at sm levels can replace (sm - l)/(s -1) fac-
tors, each at s levels. The replacement procedure can be illustrated

4
by the construction of an orthogonal main-effect plan for the 3 x 2 ex-
periment with eight trials. First construct an 6rthogonal main-effect

7
plan for the 2 experiment with eight trials. The seven two-level fac-
tors can be represented by X1, X2, X1X2, X, XX, XX andX1X X

1 2 11 3 '13 3 1 2 3.

The treatment combinations for this plan are

O 0 0 0 0 0 0
O 0 0 1 1 1 1
O 1 1 0 0 1 1
O 1 1 1 1 0 0

1 0 1 0 1 0 1
1 0 1 1 0 1 0

1 0 0 1 1 0
1 0 1 0 0 1

It is known that there exists an orthogonal main-effect plan for the 2

experiment with four trials. The treatment combinations for this plan
are 000, 011, 101, and 110. Thus, by choosing three factors of the 2
plan whose X representations are such that the generalized interaction
of any two of the three factors is the third factor, three two-level fac-
tors can be replaced by a four-level factor, according to the following
correspondence scheme:
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Two-level Four-level
factor facto r

0 00 0 0

011 1
1 0 1 > 2
1 10 > 3

Since the X representations of the first three factors of the above plan
are X1 , X 2 and X1X?, these three factors can be replaced by a four-level

12' 4
factor and the orthogonal main-effect plan for the 4 x 2 experiment in
eight trials is given by the following treatment combinations:

0 0 0 0 0
0 1 1 1 1
1 0 0 1 1

1 1 0 0
2 0 1 0 1
2 1 0 1 0
3 0 1 1 0
3 1 0 0 1

The plan for the 3 x 24 experiment is then obtained by collapsing the
four-level factor to a three-level factor by the correspondence

Four-level Three -level
factor factor

0 0
11
2 -> 2

3 1

The smallest plan which yields uncorrelated estimates of main
effects in the 3 x 24 experiment and which also satisfies the equal fre-
quency condition would require 24 treatment combinations.

The procedure for constructing plans which permit uncorrelated esti-
mates of all main effects and some or all of the two-factor interaction
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effects for asymmetrical factorial arrangements consists of first con-
structing the corresponding plan for a symmetrical factorial arrangement
and then utilizing the collapsing or replacing techniques to obtain the de-
sired plan. Whereas a plan permitting uncorrelated estimates of all
main effects and all two-factor interactions among the two-level factors

nth 3 34
in the 2 x 3 experiment would require 72 treatment combinations to
satisfy the condition of equal frequencies it would only require 27 treat-
ment combinations to satisfy the proportional frequency condition.

BLOCKING. Even though the proportional frequency designs are
highly fractionated they may still require more trials than can be carried
out under uniform conditions. Thus, it would be desirable to divide the
experimental data into smaller blocks in such a manner that the main
effects may still be estimated without correlation. In order to perform
an experiment in blocks one may utilize one or more of the factors of an
orthogonal main-effect plan for the 4 x 32 x 26 experiment with sixteen
trials. The following plans may be derived from this one by using various
factors as blocking factors:

32 5
(i) 4 x 3 x 2 in 2 blocks of 8 treatment combiantions,

(ii) 4 x 32 xe

(iii) 3 x 2 in 4 blocks of 4 treatment combinations,

(iv) 4 x 3 x 6 in 4 blocks of 4 treatment combinations.

ORTHOGONAL POLYNOMIALS. The orthogonal contrasts which de-
fine effects and interactions in an equal frequency design can be readily
determined from a table of orthogonal polynomials. The advantage of
using orthogonal contrasts to define effects and interactions arises-from
the fact that orthogonal polynomials are so constructed that any term of
the polynomial is independent of any other term. This property of in-
dependence permits one to compute each regression coefficient inde-
pendently of the others and also facilitates testing the significance of
each coefficient.

Tables of orthogonal polynomials for the case of equally spaced levels
are readily available, e. g. Fisher and Yates [61 , Anderson and Houseman
141. It would be an impossible task to compile a general table of orthogoral
polynomials for unequally spaced levels. However a simple procedure for
computing these orthogonal polynomials is available and will be presented
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below. If equally spaced levels do not each occur in a plan an equal num-
ber of times the published tables of orthogonal polynomials are not appro-
priate. The orthogonal polynomials for equally spaced levels which do not
occur in a plan with equal frequency can be computed by the following method
for unequally spaced levels.

For any set of orthogonal polynomials the linear contrast is of the form
Z (a + Px)yx, where a and P are constants, x is the level at which the

factor occurs, y is the response to the treatment combination with the

factor at the x level and the summation is over every value of x which is
presented. The quadratic and cubic contrasts are of the form M(a + x + yx+y..

"2 3 '•,
and (c(a + px + yx + 6x )yx, respectively. The extension to higher order
contrasts is obvious. Two contrasts are orthogonal if the coefficients of
each contrast sum to zero and the sum of products of the corresponding
coefficients of the two contrasts is zero.

Table 1

Coefficients of Orthogonal Contrasts

Level of
x Linear Quadratic Cubic

1 + + '+ +(P +1 +-'
2 + 2 p-: +41/ +29 +4- + 8 g
4 +4 . + 4k? + 167/ + 49 + 16-/ + 640

We will illustrate the procedure for obtaining orthogonal polynomials
for unequally spaced levels with an example.

Consider an independent variable x with levels 0, 1, 2 and 4. The
coefficients of the linear, quadratic and cubic contrasts for this example
are displayed in Table 1, The coefficients of the linear contrast must sum
to zero. Thus,

4ýc +7/. = 0.

Setting (4 =1 we find that CT = -7/4. In order that the coefficients of the
orthogonal contrasts be integers reduced to lowest terms we multiply these
coefficients by 4 to obtain , = 4 and q = -7. Substituting ff = -7 and/P = 4
in the linear contrast given in Table 1, gives the linear coefficients.
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Level of Coefficient of
x linear contrast
0 -7
1 -3
2 1
4 9

The coefficients of the quadratic contrast must sum to zero. Hence,

4 ( + 79 +21y=0

The sum of products of the corresponding coefficients of the linear and
quadratic contrasts must also equal zero. Thus,

350 + 145y = 0

Solving these two equations to obtain integral values for Z, and y we
obtain r 14, O -29 andy = 7.

If we substitute these values in the quadratic contrast and reduce the
resulting coefficients to lowest terms the coefficients of the quadratic
contrast is given by

Level of Coefficient of
x Quadratic contrast

0 7
1 -4
2 -8
4 5

Similarly the sum of the coefficients of the cubic contrast and the sum
of products of the corresponding coefficients of the linear and cubic
contrasts must each equal zero. Hence,

46 + 7 + 21Y,+ 736 =0
350 +145y+ 5816 =0

44y + 252 6 =0

Solving these equations to obtain integral values for Q, 0 , y and we
obtain 4(= -36, 3 392, y = -315 andL = 55. If we substitute these

0
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Svalues in the form of the coefficients of the cubic contrast given in T able 1
and reduce the resulting coefficients to lowest terms, the coefficients of
the cubic contrast are given by

Level of Coefficients of
x Cubic contrast

0 -3
S1 8
S2 -6
4 1

The orthogonal polynomials are presented in the following table.

Table 2
Orthogonal Polynomials

Level of
x Linear Quadratic Cubic

S0 -7 7 -3

1 -3 -4 8

2 1 -8 -6
4 9 5 1

The symbol P represents one unit of the linear effect of a factor when
set equal to unity. In order to obtain integral coefficients P was set equal
to 4 and hence(i/4ý represents one unit of the linear effect. Consequently
the linear contrast with coefficients given in Table 2 represents the esti-
mate of 1/4 the linear effect of the factor. It is easily verified that the
coefficients of the quadratic contrast are given by

7 29 7 2

2 2

where x = 0, 1, 2 and 4 respectively. Thus the symbol ,y represents one
it ounit of 2he quadratic effect, and the linear contrast with coefficients given

in Table 2 represents the estimate of 2 the quadratic effect of the factor.
7

9
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Similarly it may be demonstrated that the cubic contrast with coefficients
given in Table 2 represents the estimate of 12/55 the cubic effect of the
factor.

This constant which is multiplying each effect will be denoted by I/X
and in the tables of orthogonal polynomials presented by Addelman and
Kempthorne 13] the value of X and the sum of squares of the coefficients
were both given. Any contrast defined by the coefficients given in the
tables of orthogonal polynomials represents 1/X times the appropriate
effect of the factor.

EFFICIENCIES. Although any many-one correspondence of the set of
s levels to the set of s. levels will yield proportional frequencies of the

levels, there arises the problem of which correspondence is "best" in some
sense. The problem may be solved by determining the efficiencies of the

main-effect estimates obtained using proportional frequencies relative to
the estimates which would result from using equal frequencies of the levels
of each factor.

As an illustration we will calculate the relative efficiency of a three-
level factor in a main-effect plan with twenty-five trials.

Assume the correspondence scheme used to collapse a five-level factor
to three levels is as follows:

Five-level Three-level
factor factor

0 > 0
1 "> 1
2 --a. 2
3 ______> 2
4 .0

The levels 0, 1, and 2 occur in the ratio's 2: 1: 2. Thus for this factor
the 0 level occurs in ten treatment combinations, the 1 level occurs in five
treatment combiantions and the 2 level occurs in ten treatment combina-
tions.

The variance of the linear effect estimate of this factor is equal to
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0'ý/20 and hence the information on a unit basis is equal to 20/125e = 4/5 2.

The variance of the linear effect estimate of a three-level factor in 3n
trials is equal to t2L2. 3n-l and the information on a unit basis is
2. 3 /n'l/ 3nW2 = 2/3cy. Hence the relative efficiency of the linear effect
estimate is equal to (4/5)x(3/2) = 6/5.

The variance of the quadratic effect estimate for the three-level
factor in twenty-five trials is equal to 0,2/4 and the information is then
equal to 4/250T. The variance of the quadratic effect estimate with 3n
trials is equal to LY2/2. 3 n- and hence the information on a umit basis
is equal to 2/9oZ . The relative efficiency of the quadratic effect e stimate

is therefore equal to (4/25)x(9/2) = 18/25.

0

0
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Table 3

Relative Efficiencies of Proportional Frequency Estimates

Level 0 1 Efficiency
Proportional frequency

1 : 2 8/9
2 : 3 24/25

.1 : 4 16/25
3 : 4 48/49
2 : 5 40/49
1 : 6 24/49

Level 0 1 2

Contrast Proportional frequency

Linear 1 : 2 : 13/4
Quadratic 1 : 2 : 1 9/8
Linear 2 : I : 2 6/5
Quadratic 2 : 1 : 2 18/25
Linear I : 3 : 1 3/5
Quadratic 1 : 3 : 1 27/25
Linear 2 : 3 : 2 6/7
Quadratic 2 : 3 : 2 54/49
Linear 3 : I : 3 9/7
Quadratic 3 : 1 : 3 27/49
Linear 1 : 5 : 1 3/7
Quadratic 1 : 5 : 1 45/49

0
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The relative efficiencies of the estimated effects are presented for
various proportional frequencies in Table 3. One would choose the pro-
portional frequencies which give the greatest efficiency of estimates.
Thus for example, if an experiment in twenty-five trials involved two-

level factors the two levels should occur in the ratio 2 : 3 rather than
in the ratio 1 : 4 because the efficiency of the 2 : 3 ratio is 24/25
whereas the efficiency of the 1 4 ratio is only 16/25.

4

a
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